N-ACETYLNEURAMINIC ACID ALDOLASE

from Microorganism

N-Acetylneuraminate pyruvate-lyase (EC 4.1.3.3)

N-Acetylneuraminate N-Acetyl-D-mannosamine + Pyruvate

PREPARATION and SPECIFICATION

Appearance : Slight yellow amorphous powder, lyophilized

Activity : 15U/mg-solid or more

Contaminants : Catalase $\leq 1.0\%$; NADH oxidase $\leq 1.0 \times 10^{-30}\%$

Stabilizers : Mannitol EDTA

PROPERTIES

Stability : The product can be stored at 2~8°C for transportation process up to ten days but

long-term storage should be at -20°C.

Molecular weight : 33.9 kDa Isoelectric point : 6.22

Michaelis constant : 2.8×10⁻³M (N-Acetylneuraminic acid)

Inhibitors : Co²⁺、Cu²⁺、Ag²⁺、Hg²⁺、NEM、Proclin

Optimum pH : $7.5 \sim 8.0$ (Fig.1)

Optimum temperature $:50^{\circ}$ C (Fig.2)

pH stability : pH4.5~10.5 (25°C, 25hr) (Fig.3)

Thermal stability : below 80°C (pH7.5, 30min) (Fig.4)

Effect of various chemicals : (Table 1)

PRINCIPLE

N-Acetyineuraminate N-Acetylneuraminic acid aldolase Pyruvate + N-Acetyl-D-mannosamine

Pyruvate + NADH + H⁺ Lactate dehydrogenase L-Lactate + NAD⁺

The disappearance of NADH is measured at 340nm by spectrophotometry.

UNIT DEFINITION

One unit causes the oxidation of one micromole of NADH per minute at pH7.5 and 37°C

APPLICATIONS

This enzyme is useful for enzymatic determination of N-acetylneuraminic acid and sialic acid when coupled with the related enzyme in clinical analysis.

Table 2.Effect of Various Chemicals on N-Acetylneuraminic acid aldolase

The enzyme dissolved in 50mM K-phosphate buffer, $\,$ pH7.5 $\,$ (10U/ml) was incubated with each chemical at 37 $\,$ °C for 2 hr.

Chemical	Concn.(mM)	Residual activity(%)
None	_	100
CaCl ₂	2	93
$MgSO_4$	2	92
$ZnSO_4$	2	121
NiCl ₂	2	130
$CoCl_2$	2	64
$MnCl_2$	2	93
FeCl ₃	2	94
CuSO ₄	2	0
$AgNO_3$	2	1
$HgSO_4$	2	1
NEM	2	2
IAA	2	87

Chemical	Concn.(mM)	Residual activity(%)
BME	2	98
Hydroxylamine	2	101
EDTA	5	95
NaF	20	99
NaN_3	20	97
Proclin-300	0.045% (v/v)	56
SDS	0.05% (w/v)	86
Na-Cholate	0.1% (w/v)	102
Tween-20	0.1% (v/v)	102
Triton X-100	0.1% (v/v)	101
Span-20	0.1% (v/v)	102
Brij-35	0.1% (w/v)	102

Fig.1. pH-Activity

100(%)
4 5 6 7 8 9 10 11

- → 50mM Acetate buffer
- ── 50mM K-phosphate buffer
- → 50mM Tris-HCl buffer
- → 50mM Glycine-NaOH buffer

Fig.2. Temperature Activity

in 50mM K-phosphate buffer, pH7.5

25°C 25hr-treatment with 50mM buffer solution:

- Acetate buffer
- Borate buffer

Fig.4. Thermal Stability

30min- treatment with 50mM K-phosphate buffer, pH7.5

